

TAC Forta M800

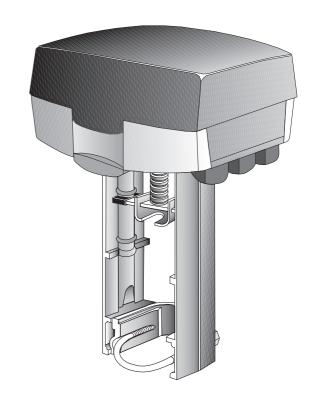
11 Jun 2003

G-40-36

Actuator for valves

M800 is an electro-mechanical actuator for the control of two-way and three-way plug valves in:

- domestic hot water systems
- heating systems
- air handling systems


M800 is either controlled by an increase/decrease signal or by a modulating 2–10 V control signal. Modulating control makes for a faster positioning of the actuator.

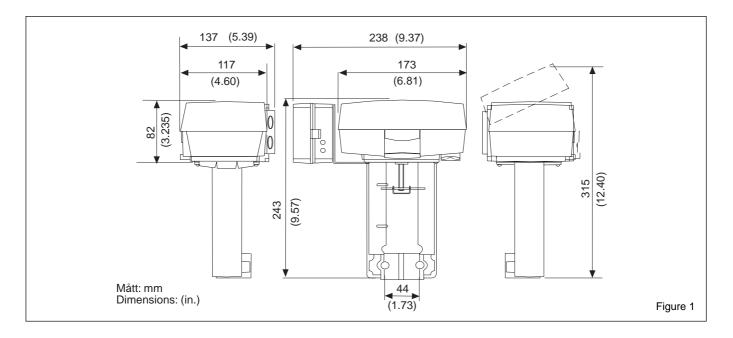
The electronic circuitry of the actuator ensures that the running time is the same, regardless of the stroke of the valve in question.

It is easy to mount and connect the actuator. It can be mounted directly onto TAC's control valves, without any mounting kit.

The working range of the actuator is adjusted automatically depending on the stroke of the valve. The electronic circuitry of the actuator then takes care of the adjustment of the valve end positions.

The actuator is supplied by 24 V AC. It can provide 16 V DC voltage supply for older TAC controllers.

TECHNICAL DATA, M800


Part numbers see the table on the next page
Supply voltage 24 V AC ±10%, 50–60 Hz
Power consumption average 15 VA
Transformer sizing 50 VA
Running time:
Modulating 10–25 mm (0.39 - 1 in.) 15 s
Modulating 25-32 mm (1 - 1.26 in.) 20 s
Modulating 10–52 mm (0.39 - 2.05 in.)
Increase/decrease 300 s/60 s
Close off time with STS, at power failure:
Stroke 10–25 mm (0.39 - 1 in.) max. 20 s
Stroke 25–32 mm (1 - 1.26 in.) max. 25 s
Stroke 32–52 mm (1.26 - 2 in.) max. 35 s
Stroke
Factory set stroke
Thrust
Duty cycle max. 20%/60 minutes
Analog input:
Voltage 0–10 V
Impedance min 100 k Ω
Digital inputs VH–VC:
Voltage across open input
Current through closed input 5 mA
Pulse time min. 20 ms

Output C4.
Output G1:
Voltage
Load
Output Y:
Voltage 2-10 V (0-100%)
Load 2 mA
Ambient temperature:
Operation10 - +50 °C (14°F - 122°F)
Storage10 - +50 °C (14°F - 122°F)
Ambient humiditymax. 90% RH
Enclosure rating IP 54
Standards:
Emission EN 50081-1:1992
Immunity EN 50082-1:1992
Heat IEC-68-2-2
HumidityIEC-68-2-3
Cold IEC-68-2-1
Salt mistIEC-68-2-11
Vibration IEC-68-2-6
Material:
Housing aluminium
Cover ABS/PC plastic
Color aluminium/black
Weight
Dimensions (mm) refer to the table on the next page
2 2 2 2 ()

PART NUMBERS

Designation	Explanation	Part number
M800	modulating control signal or increase/decrease signal	880-0310-020
M800-S2	modulating control signal or increase/decrease signal and end point switches	880-0311-020
M800-STS	modulating control signal or increase/decrease signal and self testing safety device	880-0312-030
M800-S2-STS	modulating control signal or increase/decrease signal with end point switches and self testing safety device	880-0313-030

DIMENSIONS

FUNCTION

The actuator

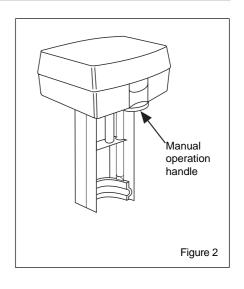
The step motor of the actuator turns a screw via a gear wheel. The motor receives a control signal from a controller. The screw gets a linear movement which moves the stem of the valve.

Control signal

M800 can either be controlled by an increase/decrease signal or by a variable direct voltage.

If an increase/decrease signal is used, the actuator normally moves inwards on an increase signal and outwards on a decrease signal, see Settings.

Manual operation

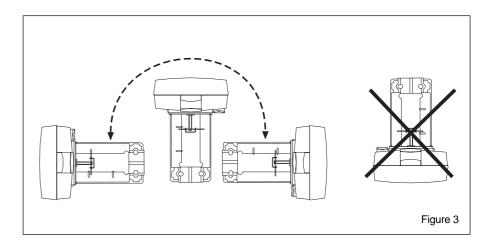

There is a manual operation handle on the actuator, see figure 2. When it is lowered, the motor stops. Then, the actuator can be operated manually if the handle is turned.

Position feedback

Forta actuators are equipped with a 2–10 V DC position feedback signal, where 2 V always corresponds to the closed position and 10 V to the open position.

End point switches

When actuators are controlled in sequence, it is possible to use the end point switches that have set positions. They will toggle when the valve is fully open or fully closed, respectively.

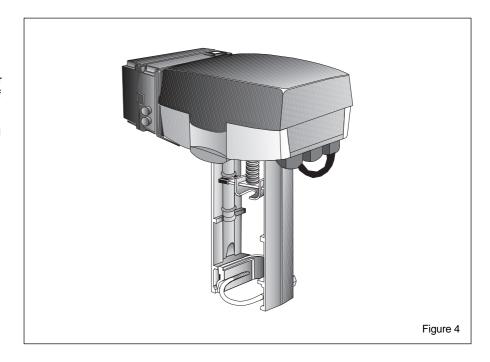


MOUNTING

The actuator may be mounted horizontally, vertically and in any position in between, but **not** upside down, see figure 3.

N.B.! Do not use the actuator for the DN15 valves V298, V282, V294, V384, V386 and V394.

To mount the actuator on a valve, slide the actuator onto the valve neck, thus making the square nut on the valve spindle fit into the groove on the cross bar. Then slide the brace into the groove on the valve neck and secure the nuts.



SELF TESTING SAFETY DEVICE, STS

STS is a processor controlled, battery operated safety device which monitors the presence of supply voltage to Forta actuators. The device supplies the actuator with power so that the actuator is able to close the valve in the event of a loss of power.

The battery is tested periodically during normal operation. Moreover, it is charged continuously for maintenance purposes.

Batteries for the STS uses NiCd.

TECHNICAL DATA, STS

Supply voltage, G 24 V AC ±10 % G0 return
Output voltage AC-DC, GF 24 V DC ±10 % G0Freturn, alt. 24 V AC ±10 %
Time to toggle AC to DC max. 5 s
DC voltage supplied during70 s
Inputs:
Battery A
Outputs:
Battery B, "rapid charging"
2 A-24 V AC two-way SPDT
Indication:
Green LED Normal operation
Red LED Alarm
Red LED on circuit board Rapid charging is active
Settings:
Bypass MANno jumper, external button
Bypass AUTO jumper on, internal function

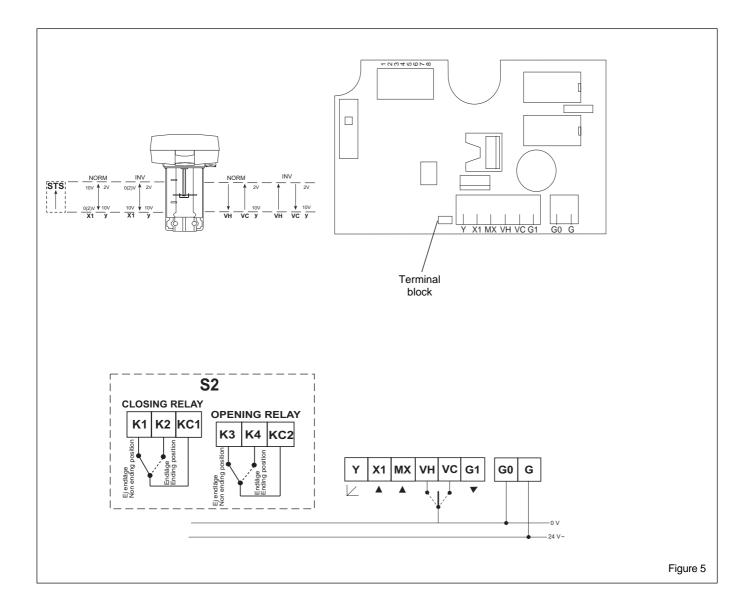
Ambient temperature10 °C -	- +50 °C (14°F - 122°F)
Ambient humidity	max 65 % RH
Enclosure rating	
Standards:	
Emission	FN 50081-1·1992
Immunity	
Heat	
Cold	
Materials:	
Box	PC Makrolon 8035
Lid	
Bracket	SS 1412-2
Color	black
Weight, including battery	
Dimensions please refer to	3 (,
Zimenelelle illiminin piodoc folor to	and annoncion drawing

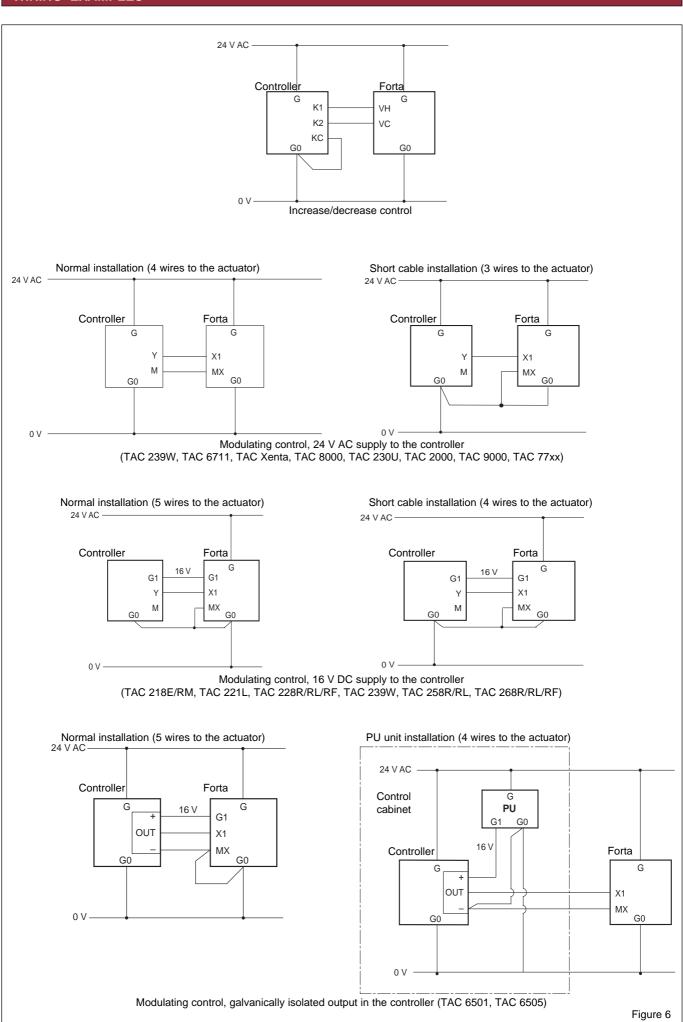
3 (8) 0-003-2063-1 (EN)

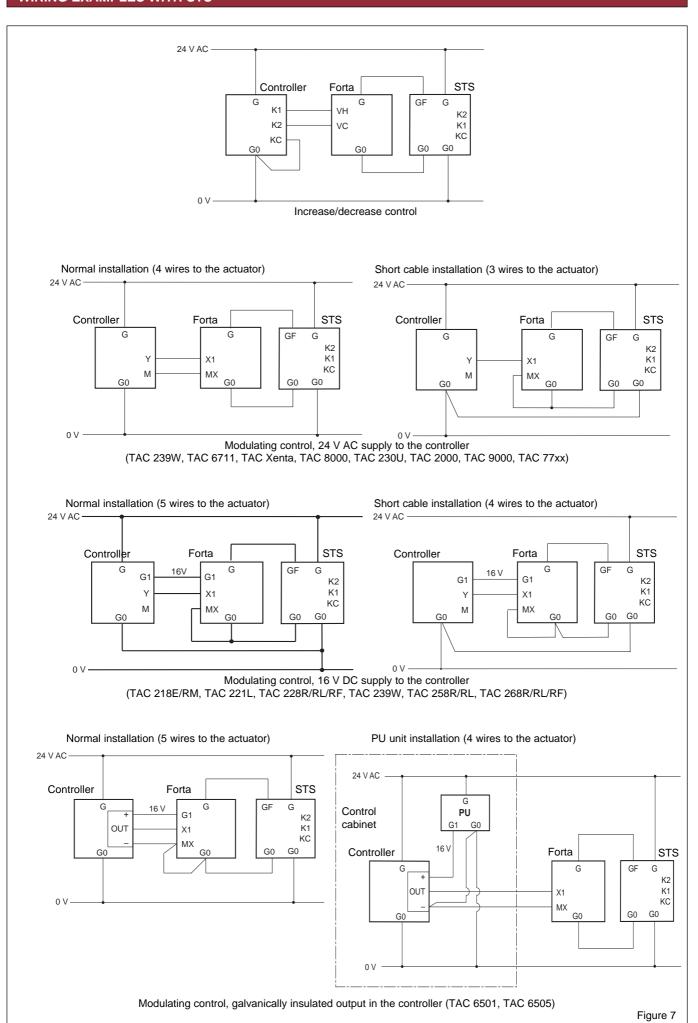
CONNECTIONS

Block	Function		Description
G	24 V AC	1	Supply
G0	24 V AC rtrn	Ĵ	voltage
X1	Input	١	Control sign-
MX	Input, neutral	- 1	als (VH, VC
VH	Increase	ì	short-circuited
VC	Decrease	J	to G0)
G1	16 V DC		Supply for RC
Υ	0-100 %		Feedback
			signal

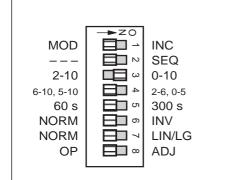
N.B.! When installed with three conductors, where the control signal reference is connected to G0, the motor current of the actuator will cause varying voltage loss in the cable and thus in the reference level. Forta, which has a highly sensitive control signal input, will detect the varying signal and follow it, which makes it difficult for the actuator to find a stable position.


This variation may be accepted in simplified installations on the following conditions: the cables between the controller and actuator are shorter than 100 m (328 ft.), the cross-sectional area


is larger than 1,5 mm2 (AWG 16) and the cables are only connected to *one* actuator. Please refer to the figures labelled "Simplified installation" for wiring instructions.


Cable lengths

The cables to G, G0 and G1 should be max. 100 m (328 ft.) and have a cross-sectional area of min. 1,5 mm² (AWG 16).


Other cables should be max. 200 m (656 ft.) and have a cross-sectional area of min. 0,5 mm² (AWG 20).

0-003-2063-1 (EN) 6 (8)

Function in the "OFF" position "O

"OFF" position "ON" position Increase/decrease – Sequence

2-10 V 0-10 V 6-10 V, 5-10 V 2-6 V, 0-5 V 60 s 300 s Normal Inverted

Normal Linear/Logarithmic

Operation End position adjustment Operation/End position adjustment

Figure 8

There are eight switches in a row on the circuit board, see figure 8.

M800: On delivery, all switches are in the "OFF" position, except for the third one.

Control signal—MOD/INC

M800 can either be controlled by an increase/decrease signal or by a variable direct voltage, a so called modulating signal, so a certain voltage level corresponds to a certain position.

Sequence or parallel control— ---/SEQ

With sequence or parallel control, two actuators can be controlled by only one control signal.

You can choose which part of a voltage range to use, the upper one 6-10 V (5-10 V) or the lower one 2-6 V (0-5 V). If the switch »NORM/INV« is in the NORM position, the higher voltage corresponds to 0% flow and the lower one to 100%. To achieve the opposite function, the switch »NORM/INV« should be put in the INV position.

Note! If sequence or parallel control is not used, the switch »——/SEQ« must be in the left position, as the switch for modulating or increase/decrease control »MOD/INC« is not valid during sequence or parallel control.

Voltage range—2-10/0-10

You can choose whether to use the control signal voltage range 2-10 V or 0-10 V.

Part of voltage range—6-10, 5-10/2-6, 0-5

You can choose which part of a voltage range to use, the upper one 6-10 V (5-10 V) or the lower one 2-6 V (0-5 V). If the switch is in the NORM position, the higher voltage corresponds to 0% and the lower one to 100%. To achieve the opposite function, the switch should be put in its INV position.

Running time-60 s/300 s

During increase/decrease control, you can choose between 60 s or 300 s running time. During modulating control, the running time is always 15 s/20 s.

Direction of movement—NORM/INV

When normal direction of movement is used, the screw of the actuator moves inwards when the control voltage decreases or if the actuator gets an increase signal. With the switch »NORM/INV«, the direction of movement can be changed.

7 (8)

Linearization—NORM/LIN/LG

Description

Voltage range

Running time

Part of voltage range

Direction of movement

Valve characteristic

Control

Control

It is possible to choose whether the motorized valve characteristics should be affected or remain unchanged. If you wish for the characteristics to be affected, the choice »LIN/LG« will make the characteristics of an equally modified percentage (EQM) valve almost linear. A motorized valve equipped with a linear valve will operate with "Quick open characteristics", i.e. when the control signal is only increased a little, the valve will be almost completely open.

Note! For the actuator to register new settings of the switches, the supply voltage must be cut or the manual operation handle lowered when the settings are done, and then it must be raised again. (This does not apply to the switch »OP/ADJ«.)

End position adjustment—OP/ADJ

The switch is used to adjust the end positions when the actuator is in operation.

0-003-2063-1 (EN)

ACTUATOR INSTALLATION

The switches on the circuit board should be set before the actuator is installed. There are no other switches or potentiometers that should be set or adjusted.

To make an end position adjustment, you only have to switch the switch »OP/ADJ« into its ADJ position, when the supply voltage has been turned on, and then back to its OP position.

When an end position adjustment is made, Forta closes the valve and opens it fully. The adjustment is finished by the actuator closing the valve again; the electronic circuitry then adjusts the stroke and the running time to the valve. The set values are stored in the EEPROM of the actuator so that they will remain after a loss of voltage.

When the end position adjustment is complete, the actuator starts to control the valve according to the control signal.

MAINTENANCE

The actuator is maintenance-free.

ACCESSORIES

Circuit board, M750/M800	1-001-0636-1
TAC Forta Handbook (GB)	0-004-7804
S2-Forta	880-0104-000
STS-Forta M310/M800	880-0107-010
NiCd batteries for the STS	1-001-9024-0

